
Batchelor 1

Steven Batchelor

Ms. Scalf

ENG-111

November 11, 2011

Procedural Generation and the Future of Media Production

In media production and computer science procedural generation has become a

commonly used term. Basically, procedural generation is used to refer to content which is

generated using algorithmic techniques rather than manual ones. There is a major advantage to

this type of content creation in that the content can be generated as it is needed (Ebert 2). This

means that an application which takes advantage of procedural generation will require much less

memory than those which store every detail of content which was previously created by an artist

(Ebert 2). Meshes and textures are the most commonly produced content. However, sound can

also be produced with procedural generation and is commonly applied in speech and music

synthesis. In my opinion despite the fact that software developers have tried to apply procedural

generation methods for a number of years, only a limited set of products have managed to

employ the technique in an extensive manner.

Procedural generation has become a common technique which can be used in almost any

programming language. In fact, procedural generation is nothing more than mathematics which

is the bases of even the most primitive computer programming language. Today, we have a

pretty large number of graphics applications that have employed procedural generation in one

form or another including video games and content creation suites. One example of these

applications would be the commonly used demoscene which adopts the procedural generation

technique as a way of packaging audiovisual content.

Batchelor 2

Throughout the last decade or so in which I have been programming as a hobby I have

found that I always have to relearn everything I thought I knew. Recently in an interview I

conducted for a class assignment I asked a fellow programmer, who works in the computer

science industry, what, in his opinion, is the most important characteristic/trait needed to excel in

the computer science field. Ryan Murray, the programmer I am speaking of, responded very

fittingly by saying, "Always having the attitude of student goes a long way" (Murray). The truth

behind his statement cannot be more evident than in the studying procedural generation.

Procedural generation has been used throughout the history of computer graphics but recently it

has been gaining more attention and countless algorithms have been developed to do almost

anything one could imagine. To fully understand every aspect of procedural generation requires

much dedication. There are more algorithms and theories out there which use procedural

generation than can be covered here. Not to mention all of the hardware specific

implementations and optimizations. In this paper I only intend to cover a brief summary of some

of the implementations where I believe procedural generation could truly shine, and I will also

try to explain them in plain English with as little techno jargon as humanly possible.

One of the main implementations which I feel could have the largest impact on video

games in particular would have to be procedural planets. However, when creating the procedural

planets for a real-time virtual simulation such as a video game, it is important to note that a high-

frame rate is usually required for smooth animation. This is usually achieved through

dynamically decreasing or increasing the planet’s level of detail depending on its position

relative to the observer. The unnecessary detail is not drawn since the observer will not be

expected to see it. Basically, to do this the standard approach begins with some type of tree data

structure such as a quad-tree which can form panels for each side of a tetrahedron, cube, or

Batchelor 3

octahedron. As the observer approaches, the panels will split into three or more smaller panels.

The panels are warped in order to create a sphere, but special care is given to ensure they are

properly connected to the edges of surrounding panels.

Some type of noise algorithm is then used to distort the surface of the sphere and generate

a terrain. Most commonly perlin noise is used but there are many other options to generate the

noise. A good example would be the algorithm I developed which uses a three dimensional

texture and smooth texture filtering also called trilinear filtering. My approach is better

optimized for modern computer graphics hardware but by no means is it a better general purpose

method. After the mesh has been constructed and the noise has been applied the procedural

planet can be observed in three dimensions. Proper calculations are also needed to present things

like rivers, movement of the sun or even rotation of the earth and satellites depending on the

intended planet. Clouds, trees, plants, and even cities can also be generated on the surface of the

planet using procedural generation (Ebert 568). Some well know applications use procedural

planets include MojoWorld and Terragen but for the most part these applications are not

intended for real time simulations. However, many independent game developers and hobbyist

programmers have developed their own implementations which can indeed render in real time.

Beyond planets, procedural generation can even produce procedural galaxies and use these to

create a procedural universe (Ebert 571).

Computer animations are yet another area I feel procedural generation could have a huge

impact. Procedural animation is one method that has been commonly used to produce more

realistic motions. Through procedural animation, it is possible to simulate the movement of

specific things such as particle systems, water, smoke, and fire (Mahoney). Character animation

can also be procedurally generated with astounding results. The animated product simulates a

Batchelor 4

real event thereby making it more or less realistic. When it comes to video games, animation has

been used to achieve complex performances including death or collapse of a character. This is

achieved through the use of interconnected rigid elements and bodies which have been

programmed in such a way that they incorporate Newtonian physics.

Today we have more complex animations produced through procedural generation such

as the use of characters which can walk, pick different things up, and drive vehicles. Animations

in real-time have also been adopted and can even punch, dodge and react to the specific

environment. Through procedural generation, it has become extremely possible to simulate

almost everything through animation and it is the reason modern animated games have become

more enjoyable and advanced. Therefore, through animation programming, it can be possible to

create anything and make it more realistic. This has also been incorporated in the field of

engineering to simulate plans and explain how completed projects will work.

One of the greatest procedural methods for improving computer graphics would have to

be the use of procedural textures. Though they are heavily implemented in computer-generated

imagery for movies they have rarely been used in video games. I believe perhaps this is simply

due to relatively cheaper cost of producing art than complex algorithms for every type of texture

used in a video game. A procedural texture is basically an image that is computer generated and

tends to imitate a real one. This is usually achieved through the use of algorithm which is

purposely intended to simulate and create a real depiction and representation of a given natural

element. This is done for materials such as metals, marble, wood, stone, and granite. In order to

achieve the natural color and look of the simulated textural image, the use of turbulence

functions and fractal noise is integrated. Such functions have to be incorporated because of their

randomness and numerical representation which a common aspect of nature. They offer a major

Batchelor 5

advantage over image based textures in that when an object is textured with an image it tends to

produce noticeable seams but this is not a problem with procedural textures since they are

produced randomly (Ross 273).

Currently, there are a number of programs which have been found effective in the

creation of varied textures through procedural texturing. These include DarkTree, Filter Forge,

Algorithmic Substance and Texture Garden. With these programs, it can also be possible to

create self-organizing textures which start from random noise. Using self-organization a

structured pattern is developed in a randomized manner. A good example of a self-organizing

production of procedural generation is the reaction-diffusion produced using specified programs

such as Algorithmic Substance. Procedural textures can be produced through solid texturing

which is a process used to generate textures and Perlin noise forms the basis function (Ebert

413). We also have genetic and cellular texturing which have become very common today (Ebert

135).

It has been possible to produce music which is entirely created through the use of

procedural generation. However, even though it has been possible to produce music through

procedural generation for a number of years it has been rarely used in any type of media. The

common term used for this kind of music is Generative Music and the term was described and

popularized by Brian Eno. Another thing about this kind of music as described by Brian is that it

remains ever changing since it is system-created (Collins and Brown). The production of this

kind of music revolves around structural, procedural, emergent, and interactive theories.

Currently we have an increasing number of software and computer systems that have been

created and properly written in such a way that they can successfully create and compose

Batchelor 6

generative music (Collins and Brown). Some of the software which can be used to create this

kind of music includes SSEYO, FractMus, Nodal, and Bloom among others.

Basically, what this means is that today we have programs which are capable of

producing generated music. This kind of music has also been incorporated in animated films and

games thus arousing in the audience the best sense of feeling and attachment depending on what

is on the screen. However, some individuals strongly believe that generative music is the best

kind of music while others argue that the real music should be originally performed by a

musician (Collins and Brown).

Procedural programming has become a common practice and as a result it has been

adopted for several generations. This form of procedure revolves around different routines and

functions and has made it possible to produce different procedural elements such as animations,

textures, planets, and even music. As a result, these aspects of production have been adopted in

different areas such as film production, music industry, and also in the production of computer

games. Procedural generation has become the talk of media production today and it has helped

the industry grow at a very fast rate. Future developments especially in the areas I have covered

could have a huge impact on movies, video games, and almost any other types of media.

Batchelor 7

Works Cited

Ebert, David. Texturing & Modeling: A Procedural Approach. New York: Morgan Kaufmann,

2002.

Mahoney, Diana Phillips. Procedural animation. Computer Graphics World, 20.5 (1997): 39.

Academic Search Premier. Web. 29 November. 2011.

Murray, Ryan. Personal interview. 2 October 2011.

Nick Collins and Andrew R. Brown. Generative Music Editorial. Contemporary Music Review,

28.1 (2009): 1-4. Academic Search Premier. Web. November. 2011.

Ross, Brian J. Procedural Texture Evolution Using Multi-objective Optimization. New

Generation Computing, 22.3 (2004), 271-293. Academic Search Premier. Web.

November. 2011.

